En física teórica, el álgebra superconforme es un álgebra de Lie graduada o superálgebra que combina el álgebra conforme y la supersimetría. En dos dimensiones, el álgebra superconforme es infinito-dimensional. En dimensiones más altas, las álgebras superconformes son finito-dimensionales y generan el grupo superconforme (en dos dimensiones euclidianas, la superálgebra de Lie no genera cualquier supergrupo de Lie).
El grupo conforme del espacio
-dimensional
es
y su álgebra de Lie es
. El álgebra superconforme es un superálgebra de Lie que contiene el factor bosónico
y cuyos generadores impares se transforman bajo representaciones espinoriales de
. Dada la clasificación de Kač de los superálgebras de Lie simples de dimensión finita, esto solo puede suceder para valores pequeños de
y
. Una lista (posiblemente incompleta es
en 3+0D (dimensiones) gracias a que 
;
en 2+1D gracias a que
;
en 4+0D gracias a que
;
en 3+1D gracias a que
;
en 2+2D gracias a que
;
- formas reales de
en 5 dimensiones;
en 5+1D gracias al hecho de que las representaciones espinorial y fundamental de
se pueden mapear mediante automorfismos exteriores.
De acuerdo con[1][2] el álgebra superconforme con
supersimetrías en 3+1 dimensiones está dado por los generadores bosónicos
,
,
,
la R-simetría U(1)
, la R-simetría SU(N)
y los generadores fermiónicos
,
,
y
. Aquí,
denotan índices espaciotemporales;
índices espinorales de Weyl izquierdos;
índices espinorales de Weyl derechos; y
los índices de la R-simetría interna.
Los supercorchetes de Lie del álgebra conforme bosnico están dados por
![{\displaystyle [M_{\mu \nu },M_{\rho \sigma }]=\eta _{\nu \rho }M_{\mu \sigma }-\eta _{\mu \rho }M_{\nu \sigma }+\eta _{\nu \sigma }M_{\rho \mu }-\eta _{\mu \sigma }M_{\rho \nu }}](./687b4acc2b5ab48f39823e263cdc8c750f3d6c7a.svg)
![{\displaystyle [M_{\mu \nu },P_{\rho }]=\eta _{\nu \rho }P_{\mu }-\eta _{\mu \rho }P_{\nu }}](./4625856a3989de9a59b85e66f47d9895e31b8a6c.svg)
![{\displaystyle [M_{\mu \nu },K_{\rho }]=\eta _{\nu \rho }K_{\mu }-\eta _{\mu \rho }K_{\nu }}](./49e9685cee498faaa78ac46a70a1841c34fcf079.svg)
![{\displaystyle [M_{\mu \nu },D]=0}](./11b11341d586db686770ca7851f2c5a676ca2867.svg)
![{\displaystyle [D,P_{\rho }]=-P_{\rho }}](./942dfb47712324e239aef315cc24a2df9b192a7e.svg)
![{\displaystyle [D,K_{\rho }]=+K_{\rho }}](./74fa88fcd77c04dc3671e519a93abcf7f70f333a.svg)
![{\displaystyle [P_{\mu },K_{\nu }]=-2M_{\mu \nu }+2\eta _{\mu \nu }D}](./b17a14d13b529b2a5745332adc5b5be70202b7de.svg)
![{\displaystyle [K_{n},K_{m}]=0}](./d293742c0c53a24590b3021ac4c80b432e667416.svg)
![{\displaystyle [P_{n},P_{m}]=0}](./8c1b4ac4978865c990d9547753314dfa09e0a281.svg)
Dónde η es la métrica de Minkowski; mientras que los de los generadores fermiónicos son:






Los generadores conformes bosónicos no portan R-cargas, dado que conmutan con los generadores de la R-simetría:
![{\displaystyle [A,M]=[A,D]=[A,P]=[A,K]=0}](./4833fa63196ae09bc9dbf8019994892ec55e0b21.svg)
![{\displaystyle [T,M]=[T,D]=[T,P]=[T,K]=0}](./56cd8446ecf271f7cfec74ad82cdad929595fdee.svg)
Pero los generadores fermiónicos si portan R-carga:
![{\displaystyle [A,Q]=-{\frac {1}{2}}Q}](./69afc1315b121c8e39f9bba64a64275714d83abe.svg)
![{\displaystyle [A,{\overline {Q}}]={\frac {1}{2}}{\overline {Q}}}](./d9133710212899ec561f70e03ff3eb04953c13ea.svg)
![{\displaystyle [A,S]={\frac {1}{2}}S}](./0f6a8645f68a80dbbb500462f5dad836d3d435ec.svg)
![{\displaystyle [A,{\overline {S}}]=-{\frac {1}{2}}{\overline {S}}}](./579c65649ca2c9220f0dd4793569401ed7f4f326.svg)
![{\displaystyle [T_{j}^{i},Q_{k}]=-\delta _{k}^{i}Q_{j}}](./a8a6ebf8c08f368281b0f2a1f1ca1a26a9c70773.svg)
![{\displaystyle [T_{j}^{i},{\overline {Q}}^{k}]=\delta _{j}^{k}{\overline {Q}}^{i}}](./17f5defc6a7813508071aaffb7d43ef150691aa7.svg)
![{\displaystyle [T_{j}^{i},S^{k}]=\delta _{j}^{k}S^{i}}](./fecaa6b3c925c62e2ac9b16ff7aba7b4b8a65132.svg)
![{\displaystyle [T_{j}^{i},{\overline {S}}_{k}]=-\delta _{k}^{i}{\overline {S}}_{j}}](./ec5f645adf1cd9d3cfd22db64bf8e0c2c98fa265.svg)
Bajo transformaciones conformes bosónicas, los generadores fermiónicos se trasforman como:
![{\displaystyle [D,Q]=-{\frac {1}{2}}Q}](./56ca193e6b9f56ff00a50dad8823f3f2393adb0e.svg)
![{\displaystyle [D,{\overline {Q}}]=-{\frac {1}{2}}{\overline {Q}}}](./1ab3f77f7221402080b35b77134456c7c0fb135f.svg)
![{\displaystyle [D,S]={\frac {1}{2}}S}](./d4268043eef612d2898de14e4068ed9d982c82c3.svg)
![{\displaystyle [D,{\overline {S}}]={\frac {1}{2}}{\overline {S}}}](./7093e155ae8b5aa0e8761b473e053f79038c7fd4.svg)
![{\displaystyle [P,Q]=[P,{\overline {Q}}]=0}](./2a910fbf5011bd0b61125eb3cc1ffbdefd913430.svg)
![{\displaystyle [K,S]=[K,{\overline {S}}]=0}](./3c7941dbb196b7aaeb96f7b6be3caa362583e8a4.svg)
Hay dos álgebras posibles con supersimetría mínima en dos dimensiones; un álgebra de Neveu–Schwarz y un álgebra de Ramond Son posibles supersimetrías adicionales, por ejemplo el álgebra superconforme N=2.
Véase también
Referencias